
Fitting Runge Kutta Coefficients using
Artificial Neural Networks

Chloe Griffin

July 20, 2022

†KIT SCC

Introduction

SCIENTIFIC COMPUTING MOTIVATION

Numerical Methods

• Solve challenging mathematical and physical problems using
computers

• Have various applications in the sciences

Primary goal:

• Discover new Runge Kutta schemes catered to target problems
or rediscover classical methods using artifical neural networks

1

EXAMPLE: EXPONENTIAL POPULATION GROWTH

Figure 1: Exponential
Population Growth
(unlimited resources) [1]

Pure Birth Model

• Relates
change in population to population
times a growth rate: dP

dt = aP

• Replace derivatives with
simple differences: dP

dt ≈ P(tn+1)−P(tn)
tn+1−tn

Create time-stepping method:

• Explicit Forward
Euler: P(tn+1) = P(tn) + ∆taP(tn)

• Implicit Backward
Euler: P(tn+1) = P(tn) + ∆taP(tn+1)

We focus on fitting the coefficients of explicit Runge Kutta methods to
target problems

2

Explicit Runge Kutta Methods

RK STRUCTURE

Consider initial value problem (IVP)
du
dt

= f (t,u(t)) (1)

with an initial condition u(0) = u0

• Approximate the continuously differentiable solution to u(t) over
some time interval [a, b] with time step h

• Build approximate solution iteratively with scheme

xn+1 = xn + h
m∑

i=1

ciki (2)

where, for a stage m method,
k1 = f (tn, xn)

k2 = f (tn + α2h, xn + β21k1(tn, xn))

k3 = f (tn + α3h, xn + h(β31k1(tn, xn) + β32k2(tn, xn)))...
km = f (tn + αmh, xn + h

m−1∑
j=1

βmjkj)

k1 = f (tn, xn)

3

RK STRUCTURE

• Recall: For a stage m method, k is defined as

km = f (tn + αmh, xn + h
m−1∑
j=1

βmjkj) (3)

• We are interested in fitting the parameters for αi, βij, and ci as
seen in a butcher tableau

0

α2 β21

α3 β31 β32
...

...
...

. . .
...

...
...

αm βm1 βm1 · · · βmm−1

c1 c2 · · · cm−1 cm

4

RK ORDER CONDITIONS

• Runge Kutta designed to obtain order of accuracy

• Error is the difference between the approximation and the actual
solution:

E(tn) = |un − u(tn)|, (4)

where un is the approximate value and u(tn) is the exact value.

• As time step decreases, approximation approaches actual
solution

• The order of a scheme, p, measures the convergence rate at
which the error decays with respect to the step size

Error ≈ Chp (5)

5

STANDARD FINDING PARAMETERS

Suppose we want parameters to ensure 2nd order accuracy for RK2

• RK2 is given by

k1 = f (tn,un)

k2 = f (tn + α2h,un + β21k1(tn,un))

un+1 = un + h(c1k1 + c2k2)

• Taylor series expansion of u in neighborhood of tn up to h2 term
provides the expression

un+1 − un = hf (tn,un) +
h2

2

(
∂f
∂t

+ f
∂f
∂u

) ∣∣∣∣
(tn,un)

+O(h3) (6)

Expanding k2 and substituting in original provides

xn+1−xn = h(c1+c2)f (tn, xn)+h2c2α2
∂f
∂t

∣∣∣∣
(tn,xn)

+hc2β21
∂f
∂t

∣∣∣∣
(tn,xn)

+O(h3)

(7)
• Matching coefficients then provides order conditions [1]

6

ORDER CONDITIONS AND CLASSICAL METHODS

• RK2 Order conditions:

c1 + c2 = 1,

c2α2 =
1
2
,

c2β21 =
1
2

• Three equations and four unknowns

Classic methods

• Heun’s method: Let α2 = 1

0

1 1

1/2 1/2

• Midpoint method: Let
α2 = 1/2

0

1/2 1/2

0 1
7

Fitting with Artificial Neural
Networks

ARTIFICIAL NEURAL NETWORK (ANNS)

• Machine learning tool modeled after human brain

• Single node (neuron) composed of inputs,weights, mathematical
activation function, and output

• Feed-forward network: input, hidden, and output layers
composed of connected neurons

Figure 2: Example neuron with inputs, weights, activation function, and
outputs (left) and example neural network (right) [2]

8

ANN RUNGE KUTTA SCHEME

Figure 3: RK2-like neural network applied
to two-body problem [3]

Anastassi et al. (2014)

• Application on two-body
problem with RK2

• Custom net input
function and identity
function for activation

• Order
conditions and absolute
difference between
target and output
for training loss function

• Fit remaining
coefficients with order
conditions using one
parameter

9

ANN RUNGE KUTTA SCHEME

Figure 4: Generalized RK2-like neural
network [4]

Guo et al. (2021)

• Similar
net input function
Nm using parameter
weight vector θ

• Generalized RHS

• Uses regularization
term with automatic
differentiation at h = 0

• Focused applications
on dynamical systems

10

OUR APPROACH

• Simple test differential equation

du
dt

=
3u
t

(8)

• Exact solution
u(t) = t3 (9)

Figure 5: Python
TensorFlow [5]

Training process

• Random uniform
distribution of initial conditions
over target time interval [1, 2]

• Send random distribution initial time
vector forward one step for training

• Python TensorFlow
with stochastic gradient descent

11

PROJECT AIMS

• Combine method approaches and apply to various target
problems

• Understand the importance of order conditions within the loss
function used for training

• Uncover the sources of errors with and without order conditions

• Evaluate the performance of methods using various time steps
for training

• Determine the correlation between training performance and
model performance

12

Results

ADJUSTED FIT WITH ORDER CONDITIONS

• Tried approach described by Anastassi et al. [3]

• Trained with loss function

(p[1] + p[2]− 1)2 + (p[2]p[0]− 0.5)2 +
∑

(u(t)− ut)
2 (10)

• Training time step (1/2)10

• Type of Method
• Pure: Use p[0], p[1], and p[2] from training
• Adjusted: Use p[0] from training and solve for p[1] and p[2] using

order conditions

13

ADJUSTED FIT WITH ORDER CONDITIONS RESULTS

Sum of Squares Error Adjusted Scheme with Order Conditions
Time Step Adjusted Scheme Heun’s Method Midpoint Method
(1/2)5 6.0394e-04 9.4259e-04 3.7665e-04
(1/2)6 7.6762e-05 1.2055e-04 4.7627e-05
(1/2)7 9.6734e-06 1.5237e-05 5.9859e-06
(1/2)8 1.2142e-06 1.9151e-06 7.5021e-07
(1/2)9 1.5217e-07 2.4004e-07 9.3898e-08
(1/2)10 1.9064e-08 3.0045-08 1.1744e-08

14

EVALUATING IMPORTANCE OF LOSS FUNCTION

• Tested the results of a control parameter (c) for a convex
combination of order conditions with training time step 0.001

c((p[1] + p[2]− 1)2 + (p[2]p[0]− 0.5)2)) + (1 − c)
∑

(u(t)− ut)
2

(11)

• As c approaches
• 1: fully controlled by order conditions
• 0: fully controlled by accuracy after step

15

PURE (WITHOUT FORCED ORDER CONDITIONS) - RK2

• Pure sum of squares error from RK2 with order control
parameter (c) and testing time step (h)

• Reduced error as c approaches 0 and reliance on order condition
increases

RK2 Sum of Squares Error with Order Control (Pure)
h|c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(1/2)7 1.10E-01 7.31E-05 7.24E-06 9.77E-06 8.96E-06 8.67E-06 9.80E-06 1.05E-05 9.32E-06 1.10E-05 9.71E-06
(1/2)8 4.15E-02 1.79E-04 4.00E-07 6.63E-07 5.99E-07 6.98E-07 6.98E-07 1.05E-06 9.03E-07 1.22E-06 1.22E-06
(1/2)9 9.00E-02 3.87E-04 1.88E-06 9.86E-07 2.84E-07 1.33E-07 1.20E-08 9.91E-08 2.28E-08 9.66E-08 1.87E-07
(1/2)10 5.57E-04 7.93 E-04 5.33E-06 2.95E-06 1.09E-06 5.23E-07 3.47E-07 1.97E-07 4.74E-08 4.71E-08 1.08E-07

16

Results from Changing Training
Time Step (RK2)

TRAINING TIMESTEP OVERVIEW

• Tested the results of training on time step values (h = (1/2)n) for
n = 1, 2...20

• Tested with order constraint parameter c = 0 without order
conditions

Results

• Errors grew exponentially and the scheme was unstable for
training step sizes 0.5, 0.25, 0.125, and 0.0625 for RK2 also
0.03175 for RK4

• Worse performance with larger and smaller training values

• May be an optimal time step for training

17

PURE (WITHOUT FORCED ORDER CONDITIONS)

• Sum of squares error from RK2 with training time step (htr) and
testing time step (hte)

RK2 Sum of Squares Error with Training Time Steps (Pure)
hte|htr (1/2)5 (1/2)6 (1/2)7 (1/2)8 (1/2)9 (1/2)10

(1/2)5 4.05E-05 0.12106 0.247548 0.308532 0.320471 0.556302
(1/2)6 0.00115 0.00690 0.070263 0.123242 0.145987 0.266812
(1/2)7 0.01451 0.03112 0.031123 0.034886 0.05812 0.119192
(1/2)8 0.05604 0.20775 0.018431 0.001993 0.016412 0.0459
(1/2)9 0.14957 0.62575 0.121894 0.00885 0.000941 0.011967
(1/2)10 0.34326 1.4942 0.366257 0.059081 0.004214 0.000859

18

LOSS FUNCTION ANALYSIS

Figure 6: Plot of loss function on x-axis and average RES on right for 10 runs
with same training value 19

FUTURE WORK

1. Implement RK4 order conditions and compare with RK2 results

2. Implement regularization term with automatic differentiation at
h = 0 as described by Guo et al.

3. Try other optimization strategies than stochastic gradient descent

4. Apply to other test problems and generalize across function
families

5. Aim to achieve higher order methods without order conditions

20

REFERENCES

Runge-Kutta Methods.

(PDF) Artificial Neural Networks for Beginners.
URL https://www.researchgate.net/publication/

1956697_Artificial_Neural_Networks_for_Beginners

A. A. Anastassi, Constructing Runge-Kutta Methods with the Use
of Artificial Neural Networks , Tech. rep.
URL http:

//link.springer.com/article/10.1007%2Fs00521-

Y. Guo, F. Dietrich, T. Bertalan, D. T. Doncevic, M. Dahmen, I. G.
Kevrekidis, Q. Li, Personalized Algorithm Generation: A Case
Study in Meta-Learning ODE Integrators (5 2021).
URL http://arxiv.org/abs/2105.01303

TensorBoard — TensorFlow.
URL https://www.tensorflow.org/tensorboard

21

https://www.researchgate.net/publication/1956697_Artificial_Neural_Networks_for_Beginners
https://www.researchgate.net/publication/1956697_Artificial_Neural_Networks_for_Beginners
https://www.researchgate.net/publication/1956697_Artificial_Neural_Networks_for_Beginners
http://link.springer.com/article/10.1007%2Fs00521-
http://link.springer.com/article/10.1007%2Fs00521-
http://link.springer.com/article/10.1007%2Fs00521-
http://link.springer.com/article/10.1007%2Fs00521-
http://arxiv.org/abs/2105.01303
http://arxiv.org/abs/2105.01303
http://arxiv.org/abs/2105.01303
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard

Questions?

22

	Introduction
	Explicit Runge Kutta Methods
	Fitting with Artificial Neural Networks
	Results
	Results from Changing Training Time Step (RK2)

