

Measuring Robustness of Deep Learning Model for Head and Neck Tumor Volume Delineation

Chloe Griffin | August 2nd, 2023

Overview

1. Project Goals

- Tumor Volume Delineation
- Measuring Robustness

2. Monai Tutorial

- General Use
- Transformations

3. Next Steps

- Defining Robustness
- Proposed Inference Protocol
- Open Questions

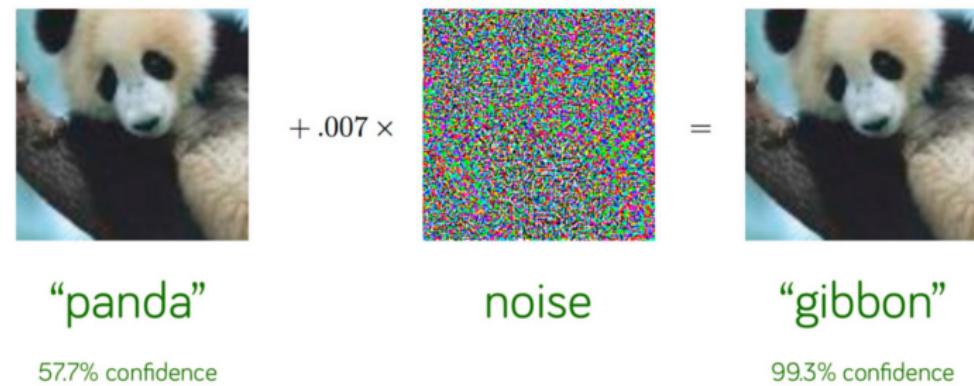
Project Goals
ooooooo

Monai Tutorial
oooo

Next Steps
oooo

Summer Project

- Visiting from Brown University
- Two and a half month stay
- Advised by Alexandra Walter
- Work with trained nnU-Net model
 - Deep-learning biomedical segmentation method
 - Self-configuration
 - Trained for head and neck tumor volume delineation
- Measure neural network robustness (funny on right) [1]
- Develop procedure and analyze results



Project Goals
●○○○○○○○

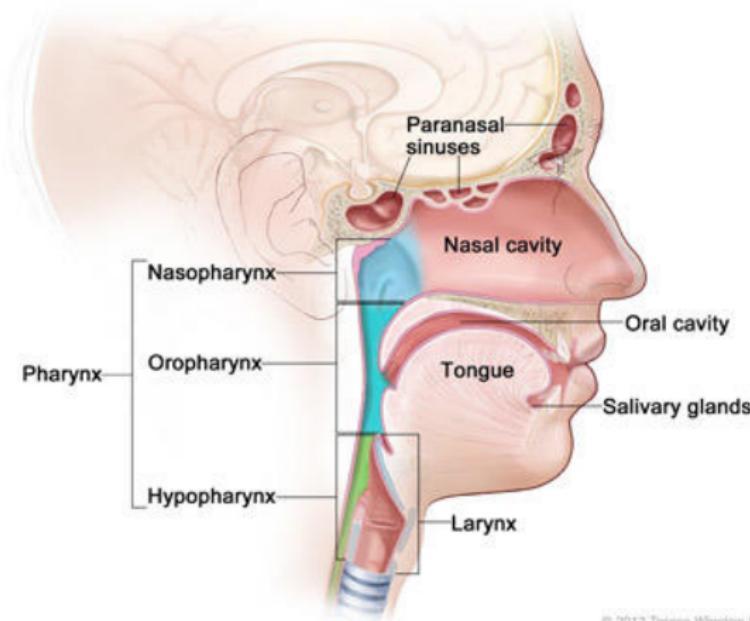
Monai Tutorial
○○○○○

Next Steps
○○○○○

Tumor Volume Delineation

- Vital for head and neck cancer (HNC) radiotherapy
- Includes several sensitive regions (right) and near organs at risk [2]
- 800,000 new cases of HNC globally each year [3]
- Ionizing radiation damages DNA and destroys malignant cells
- Life-threatening postradiation changes [4]

Head and Neck Cancer Regions



© 2012 Terese Winslow, LLC
U.S. Govt. has certain rights.

Project Goals
○●○○○○○

Monai Tutorial
○○○○○

Next Steps
○○○○

Automating the Process

- Computer tomography (CT) scans determine tissue density and gross tumor volumes [5]
- Oncologists segment scans by hand
- Average of three hours per patient
- Results are highly subjective
- Vary from expert to expert
- Single clinician results not always consistent [6]

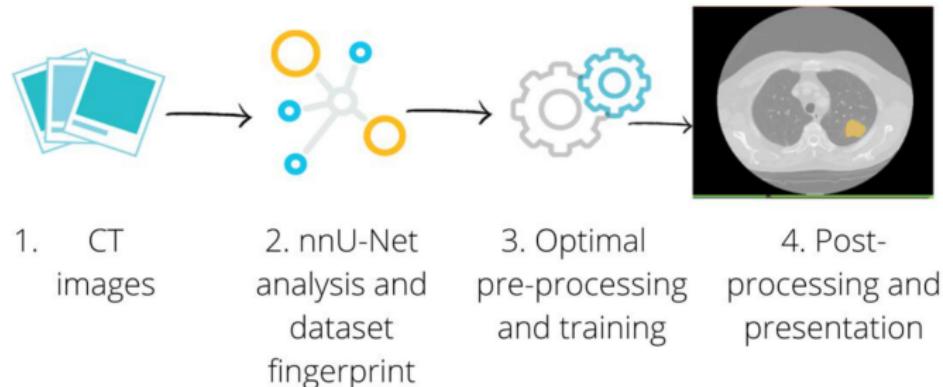


Figure: Example of automated tumor delineation pipeline [7]

Clinical Target Volume Delineation

- Gross Target Volume (GTV): Initial tumour volume
- Clinical Target Volume (CTV): GTV + volume with high probability of microscopic disease

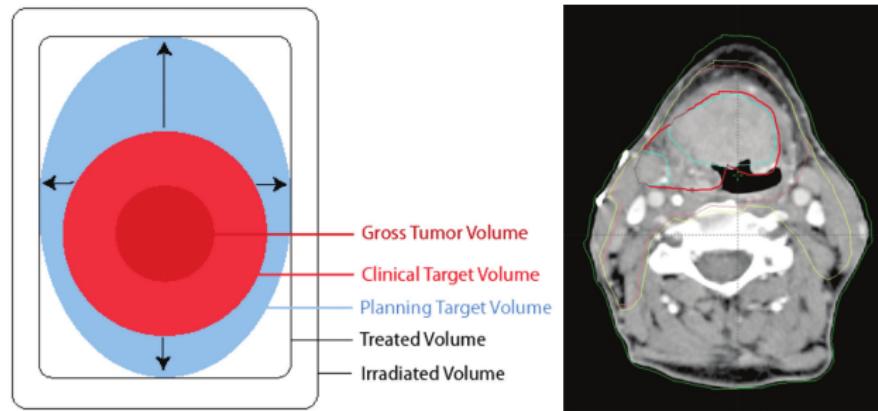


Figure: Schematic diagram of CTV (on left) and labeled slice with GTV in red and CTV in yellow (on right) [8]

nnU-Net

- “No new net:”
 - Primary advancement: automatically configures many aspects of the training process
 - Includes preprocessing, post-processing, and architecture structure
 - Methods and details can be found in [9]
- General segmentation tool
 - Divide an image key segments or isolate objects of interest
 - 2020, outperform other models due to automatic configuration
 - Task specific training may improve performance
 - Trained with Dice coefficient [9]

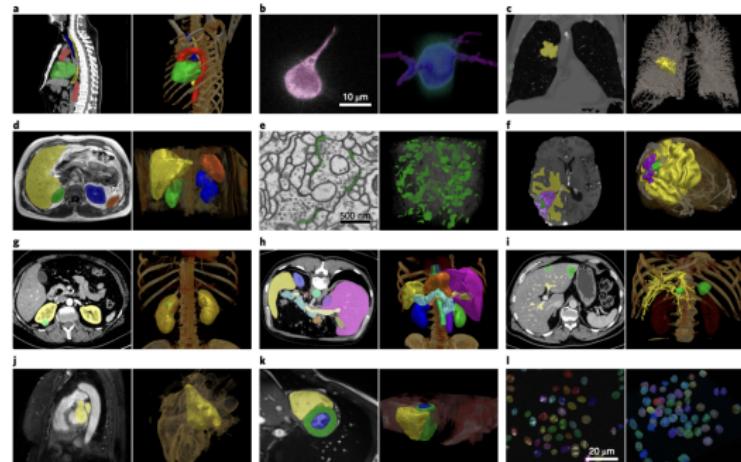


Figure: Examples of nnU-net applications

Data and Training

- Training and testing data was obtained from four cohorts
- 104 patient CT data sets for the model
- Split into 86 for training and 18 for testing
- Trained with original CT scan and manual CTV labels
- Scans were manually delineated at the German Cancer Research Center (DKFZ)

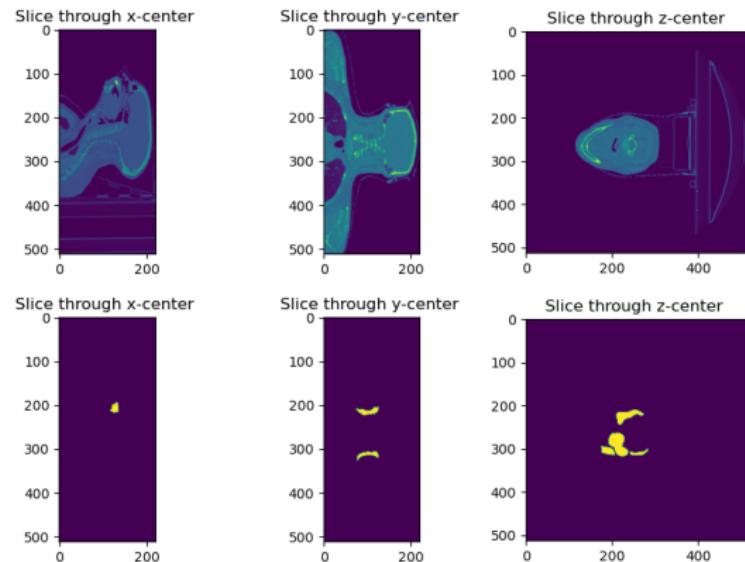


Figure: Example slices from CT scans and manual labels

Dice and sDice Metrics

- Dice:

- Measures volumetric overlap
- Ranges from 0 to 1
- Insensitive to small deviations with large structures
- Sensitive to image processing changes with small structures

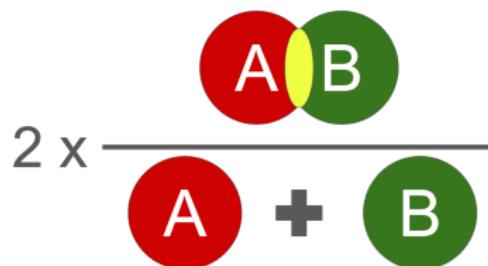


Figure: Formula for computing Dice metric [10]

- sDice:

- Measures surface overlap
- Ranges from 0 to 1
- Penalizes border placement outside tolerance
- Clinically significant for small deviations [4]

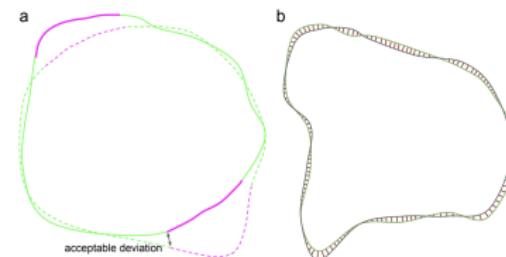


Figure: (a) Visual representation of sDice (b) Obtaining tolerance from oncologist manual labels [4]

Measuring Robustness

Goal: Measure how output metrics change given input perturbations

General Approach:

- ① Systematically rotate CT scans and labels by varying degrees
- ② Feed rotated CT scan into the trained nn-Unet model
- ③ Compare prediction metrics after rotation with prediction metrics prior to rotation
- ④ Obtain measure of robustness using existing standards

Built Python pipeline:

- ① Rotates CT scans and labels by desired degree,
- ② Feeds rotated CT scan into the trained nn-Unet model,
- ③ Scores prediction with Dice and sDice metrics

To-do:

- ① Determine best approach for sampling rotations
- ② Decide on most relevant standard for robustness

Project Goals

Monai Tutorial

Next Steps

Introducing Monai

- "Medical Open Network for AI"
- Pytorch-based
- Open-source
- Deep learning Framework
- Emphasis on healthcare imaging
- Pytorch Ecosystem
- Started by NVIDIA and King's College London
- 167 contributors [11]

Project Goals
ooooooo

Monai Tutorial
●oooo

Next Steps
oooo

Monai Applications and Use Cases

MONAI Model Zoo

MONAI Research

MONAI MODEL ZOO: a collection of medical imaging models in the MONAI Bundle format
MONAI RESEARCH: Implementations of state-of-the-art research outcomes

Segmentation

Classification

Registration

GAN & AutoEncoder

Interactive Seg.

Detection

Recon.

MONAI TUTORIALS: to demonstrate the capabilities and integration with OSS packages

AutoML data analyzers, algorithm generators

automated machine learning components for data-driven workflows and hyperparameters

Federated learning client workflows

Client APIs allow pipeline integration with any federated learning framework

Workflow engines

Supervised trainer, evaluator

Workflow event handlers

Model checkpoint saving/loading, validation pipelines, LR scheduling, metrics report generation, network output saving, transform inverter

Iteration, epoch-based metrics stats. trackers

as event handlers of the engines

FOUNDATIONAL COMPONENTS: domain-specialised APIs compatible with PyTorch programs

Data

Cache-based datasets, patch-based datasets, enhanced data loader

Readers & writers

Support of various formats: NIFTI, PNG, NPY, CSV, ...

Loss functions

Segmentation, regression, classification, detection

Networks, differentiable modules

Network with 2D/3D, Gaussian filtering, CRF, squeeze & excitation, warping

Transforms

 Spatial, intensity, IO, utilities, compose with 3rd party adaptor

CSRC

C++/CUDA extensions

Inference modules

Sliding windows, saliency Infer

Visualizations

Tensorboard integration, Jupyter Notebook integration

Metrics

MeanDice, ROCAUC, FROC, Hausdorff

Optimizers

LR finder, aiyerwise LR, Novograd

Project Goals

○○○○○○○

Monai Tutorial

○●○○○

Next Steps

○○○○

Monai Applications and Use Cases

MONAI Model Zoo

MONAI Research

MONAI MODEL ZOO: a collection of medical imaging models in the MONAI Bundle format
MONAI RESEARCH: Implementations of state-of-the-art research outcomes

Segmentation

Classification

Registration

GAN & AutoEncoder

Interactive Seg.

Detection

Recon.

MONAI TUTORIALS: to demonstrate the capabilities and integration with OSS packages

AutoML data analyzers, algorithm generators

automated machine learning components for data-driven workflows and hyperparameters

Federated learning client workflows

Client APIs allow pipeline integration with any federated learning framework

Workflow engines

Supervised trainer, evaluator

Workflow event handlers

Model checkpoint saving/loading, validation pipelines, LR scheduling, metrics report generation, network output saving, transform inverter

Iteration, epoch-based metrics stats. trackers

as event handlers of the engines

FOUNDATIONAL COMPONENTS: domain-specialised APIs compatible with PyTorch programs

Data

Cache-based datasets, patch-based datasets, enhanced data loader

Readers & writers

Support of various formats: NIFTI, PNG, NPY, CSV, ...

Loss functions

Segmentation, regression, classification, detection

Networks, differentiable modules

Network with 2D/3D, Gaussian filtering, CRF, squeeze & excitation, warping

Transforms

 Spatial, intensity, IO, utilities, compose with 3rd party adaptor

CSRC

C++/CUDA extensions

Inference modules

Sliding windows, saliency Infer

Visualizations

Tensorboard integration, Jupyter Notebook integration

Metrics

MeanDice, ROCAUC, FROC, Hausdorff

Optimizers

LR finder, aiyerwise LR, Novograd

Project Goals

○○○○○○○

Monai Tutorial

○○●○○

Next Steps

○○○○

Monai Transformations

- Many transformations found in [Monai documentation](#)
- Dictionary transformations
 - Create list of dictionaries with associated paths to stored image and label data
 - Use [Compose](#) function to load, transform, and save images
 - Create [Monai dataset](#) as input of PyTorch DataLoader and continue with training, inference, etc.

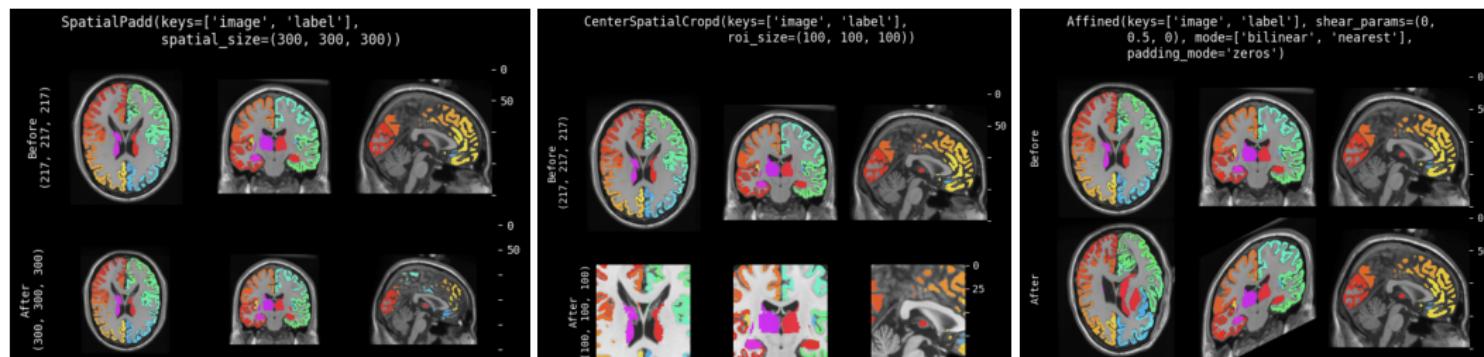


Figure: Examples of Monai Dictionary Transformations

Rotating 3D Images with Monai

- 1 Load image and label
- 2 Ensure Channel First
- 3 Use BorderPadd to ensure correct fill values for rotation
- 4 Affined rotation, padded with maximal spatial size for any rotation
- 5 Save image



Figure: Example image before and after rotation with 15 degree rotation about z-axis

Project Goals
○○○○○○○○

Monai Tutorial
○○○○●

Next Steps
○○○○

Defining Robustness

"Robustness measures the resilience of a system towards perturbations in any of its components" [12]

- Local Robustness
 - For a given input x , model provides same result for x and all inputs x' within ball of radius δ centered at x
- Global Robustness
 - Model is locally robust for all inputs in the input space [13]
- Adversarial Robustness
 - Worst-case scenario, model's ability to resist being fooled
- Probabalistic/Physically Real Robustness
 - Probability that difference in δ close inputs satisfy Lipschitz property is greater than $(1 - \epsilon)$

$$\Pr_{x, x' \sim D} (||f(x') - f(x)|| \leq k * ||x' - x|| \mid ||x' - x|| \leq \delta) \geq 1 - \epsilon$$

- Still difficult to verify, but only have to show true with probability of at least $(1 - \epsilon)$ with respect to realistic input distribution

Proposed Inference Protocols

- Mean Absolute Error of Dice and sDice as robustness metric

$$DiceMAE(\epsilon) = \frac{\sum_{i=1}^n (|O_{Dice}^i - AR_{Dice}^i(\epsilon)^i|)}{n}$$

$$sDiceMAE(\epsilon) = \frac{\sum_{i=1}^n (|O_{sDice}^i - AR_{sDice}^i(\epsilon)|)}{n}$$

where n is number of patient samples, O_{Dice}^i is score of a given sample prior to rotation, AR^i is score of the given sample after rotation, and $\epsilon = [a \ b \ c]$ is the rotation array about (x, y, z)

- Plot with respect to increasing rotation around each axis
- Use Wilcoxon signed-rank tests (non-parametric alternative to t-test) to see if selected perturbations lead to significantly different Dice scores across samples as in [14].

Open Questions

- ➊ Should we focus on realistic cases for robustness test? Or take adversarial approach?
- ➋ Is there an exact criterion to answer "is this neural network robust"? Is this too problem dependent?
- ➌ If adversarial, should we stick with rotations across one axis at a time? Or try rotating across several dimensions at once since we have the capacity?

Questions?

Project Goals
ooooooo

Monai Tutorial
oooo

Next Steps
ooo●

References I

- Why Robustness is not Enough for Safety and Security in Machine Learning | by Christian Kästner | Towards Data Science.
URL <https://towardsdatascience.com/why-robustness-is-not-enough-for-safety-and-security-in-machine-learning-1a35f6706601>
- L. Q. Chow, Head and Neck Cancer, New England Journal of Medicine 382 (1) (2020) 60–72.
doi:10.1056/NEJMRA1715715.
URL <http://www.nejm.org/doi/10.1056/NEJMra1715715>
- D. Kawakita, I. Oze, S. Iwasaki, . Tomohiro Matsuda, . Keitaro Matsuo, H. Ito, Trends in the incidence of head and neck cancer by subsite between 1993 and 2015 in Japan, Cancer Medicine 11 (2022) 1553–1560.
doi:10.1002/cam4.4539.
URL <https://onlinelibrary.wiley.com/doi/10.1002/cam4.4539>

References II

- S. Nikolov, S. Blackwell, A. Zverovitch, R. Mendes, M. Livne, J. De Fauw, Y. Patel, C. Meyer, H. Askham, B. Romera-Paredes, C. Kelly, A. Karthikesalingam, C. Chu, D. Carnell, C. Boon, D. D'Souza, S. A. Moinuddin, B. Garie, Y. McQuinlan, S. Ireland, K. Hampton, K. Fuller, H. Montgomery, G. Rees, M. Suleyman, T. Back, C. Hughes, J. R. Ledsam, O. Ronneberger, Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy (9 2018).
URL <http://arxiv.org/abs/1809.04430>
- N. G. Burnet, S. J. Thomas, K. E. Burton, S. J. Jefferies, Defining the tumour and target volumes for radiotherapy, *Cancer Imaging* 4 (2) (2004) 153.
doi:10.1102/1470-7330.2004.0054.
URL [/pmc/articles/PMC1434601//pmc/articles/PMC1434601/?report=abstracthttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1434601/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1434601/)

References III

- B. Huang, Y. Ye, Z. Xu, Z. Cai, Y. He, Z. Zhong, L. Liu, X. Chen, H. Chen, B. Huang, 3D Lightweight Network for Simultaneous Registration and Segmentation of Organs-at-Risk in CT Images of Head and Neck Cancer, *IEEE Transactions on Medical Imaging* 41 (4) (2022) 951–964.
doi:10.1109/TMI.2021.3128408.
 - M. Ferrante, L. Rinaldi, F. Botta, X. Hu, A. Dolp, M. Minotti, F. De Piano, G. Funicelli, S. Volpe, F. Bellerba, P. De Marco, S. Raimondi, S. Rizzo, K. Shi, M. Cremonesi, B. A. Jereczek-Fossa, L. Spaggiari, F. De Marinis, R. Orecchia, D. Origgi, Application of nnU-Net for Automatic Segmentation of Lung Lesions on CT Images and Its Implication for Radiomic Models, *Journal of Clinical Medicine* 11 (24) (2022) 7334.
doi:10.3390/JCM11247334/S1.
- URL
<https://www.mdpi.com/2077-0383/11/24/7334/htm> <https://www.mdpi.com/2077-0383/11/24/7334>

References IV

- A. K. Berthelsen, J. Dobbs, E. Kjellén, T. Landberg, T. R. Möller, P. Nilsson, L. Specht, A. Wambersie, What's new in target volume definition for radiologists in ICRU Report 71? How can the ICRU volume definitions be integrated in clinical practice?, *Cancer Imaging* 7 (1) (2007) 104–116.
doi:10.1102/1470-7330.2007.0013.
- F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, K. H. Maier-Hein, nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation, *Nature Methods* 18 (2) (2021) 203–211.
doi:10.1038/s41592-020-01008-z.
- The Difference Between Dice and Dice Loss - PYCAD.
URL <https://pycad.co/the-difference-between-dice-and-dice-loss/>
- Project MONAI — MONAI 0 Documentation.
URL <https://docs.monai.io/en/latest/index.html>

References V

- R. Fabra-Boluda, C. Ferri, F. Martínez-Plumed, M. José Ramírez-Quintana, Robustness Testing of Machine Learning Families using Instance-level IRT-Difficulty (2022).
- R. Mangal, A. V. Nori, A. Orso, Robustness of Neural Networks: A Probabilistic and Practical Approach.
- Z. Liu, J. Zhang, V. Jog, Po, L. Loh, A. B. Mcmillan, Robustifying Deep Networks for Medical Image Segmentation, Journal of Digital Imaging 1 (2021) 3.
doi:10.1007/s10278-021-00507-5.
URL <https://doi.org/10.1007/s10278-021-00507-5>

