BROWN

Karlsruher Institut fur Technologie

Measuring Robustness of Deep Learning Model for
Head and Neck Tumor Volume Delineation

Chloe Giriffin | August 2nd, 2023

KIT — Die Forschungsuniversitat in der Helmholtz-Gemeinschaft

www.kit.edu


https://www.kit.edu

AKIT

.
Overview

1. Project Goals
& Tumor Volume Delineation
® Measuring Robustness

2. Monai Tutorial
@ General Use
& Transformations

3. Next Steps
a Defining Robustness
a Proposed Inference Protocol
® Open Questions

Project Goals Monai Tutorial Next Steps
00000000 00000 0000

2/19 August 2nd, 2023  Chloe Giriffin: KIT-Beamer-Vorlage SCC



AIT

Summer Project

& Visiting from Brown University
® Two and a half month stay
@ Advised by Alexandra Walter

® Work with trained nnU-Net model

® Deep-learning biomedical
segmentation method

® Self-configuration

® Trained for head and neck

tumor volume delineation “panda” noise “gi bbon"
® Measure neural network

+.007 x

robustness (funny on right) [1] 57.7% confidence 99.3% confidence
@ Develop procedure and analyze
results
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Tumor Volume Delineation

@ Vital for head and neck
cancer (HNC) radiotherapy

® Includes several sensitive
regions (right) and near
organs at risk [2]

® 800,000 new cases of HNC
globally each year [3]

® |onizing radiation damages
DNA and destroys
malignant cells

a |ife-threatening
postradiation changes [4]
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Automating the Process

@ Computer tomography (CT) scans

o
determine tissue density and gross ‘ . -
tumor volumes [5] > 5

. o
@ Oncologists segment scans by hand
@ Average of three hours per patient 1. 2. nnU-Net 3. Optimal 4. Post-
® Results are highly subjective images analysis and pre»procggsmg processmg‘and
dataset and training presentation
& Vary from expert to expert fingerprint
& Single clinician results not always
consistent [6] Figure: Example of automated tumor delineation pipeline [7]
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Clinical Target Volume Delineation

@ Gross Target Volume (GTV): Initial tumour volume
@ Clinical Target Volume (CTV): GTV + volume with high probability of microscopic disease

Gross Tumor Volume

Clinical Target Volume
Planning Target Volume

— Treated Volume

— Irradiated Volume

Figure: Schematic diagram of CTV (on left) and labeled slice with GTV in red and CTV in yellow (on right) [8]
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& “No new net:"
® Primary advancement: automatically configures
many aspects of the training process
® |ncludes preprocessing, post-processing, and
architecture structure
® Methods and details can be found in [9]

® General segmentation tool
® Divide an image key segments or isolate objects of

interest
® 2020, outperform other models due to automatic {’)

configuration
@ Task specific training may improve performance
® Trained with Dice coefficent [9]

Figure: Examples of nnU-net applications
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Data and Training

Slice through x-center Slice through y-center Slice through z-center
3 0

100

200

® Training and testing data was obtained from four 500
cohorts a0
® 104 patient CT data sets for the model >3
& Split into 86 for training and 18 for testing slicg through x-center
® Trained with original CT scan and manual CTV 00

labels 200

® Scans were manually delineated at the German
Cancer Research Center (DKFZ)

Figure: Example slices from CT scans and manual labels
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Dice and sDice Metrics

a Dice:

® Measures volumetric overlap
Ranges from 0 to 1

(]
® |nsensitive to small deviations with large structures
® Sensitive to image processing changes with small

structures

2 X
o=

Figure: Formula for computing Dice metric [10]
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& sDice:
® Measures surface overlap
® Ranges from 0 to 1
® Penalizes border placement outside tolerance
® Clinically significant for small deviations [4]

b
pre—
/ g,

[
b

NN
scceptatre deveiin / i@y/‘”‘w»uﬁf

Figure: (a) Visual representation of sDice (b) Obtaining
tolerance from oncologist manual labels [4]
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Measuring Robustness

Goal: Measure how output metrics change given input perturbations

General Approach: Built Python pipeline:

o Syst.ematically rotate CT scans and labels by @ Rotates CT scans and labels by desired degree,
varying degrees @ Feeds rotated CT scan into the trained nn-Unet
@ Feed rotated CT scan into the trained nn-Unet model,

model © Scores prediction with Dice and sDice metrics

To-do:
@ Determine best approach for sampling rotations

© Compare prediction metrics after rotation with
prediction metrics prior to rotation

@ Obtain measure of robustness using existing
@ Decide on most relevant standard for robustness

standards
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Introducing Monai

"Medical Open Network for Al"
Pytorch-based

Open-source

Deep learning Framework
Emphasis on healthcare imaging
Pytorch Ecosystem

Started by NVIDIA and King’s College
London

® 167 contributors [11]
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Monai Applications and Use Cases
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MONAI MODEL ZOO: a collection of medical imaging models in the MONAI Bundle format
MONAI Model Zoo MONAI Resea MONAI RESEARCH: Implementations of state-of-the-art research outcomes

MONAI TUTORIALS: to demonstrate the capabilities and integration with 0SS packages

Classification Registration | GAN & AutoEncoder

MONAI WORKFLOWS: for ease of robust training & evaluation of research experiments

AutoML data analyzers, algorithm generators Federated learning client workflows
Client APIs allow pipeline integration with any federated learning framework

automated machine learning components for data-driven workflows and hyperparameters

Workflow event handlers Iteration, epoch-based metrics stats. track

Model checkpoint saving/loading, validation pipelines, LR scheduling, as event handlers of the engines

Workflow engines

Supervised trainer, evaluator

metrics report generation, network output saving, transform inverter

FOUNDATIONAL COMPONENTS: domain-specialised APls compatible with PyTorch programs
Loss functions Networks, Transforms
Segmentation, regression, differentiable modules Spatial, intensity, |0, utilities,
classification, detection ’ compose with 3" party adaptor
Network with 2D/3D, Gaussian filtering,
CRF, squeeze & excitation, warping

Readers & writers
Support of various formats:
NIfTI, PNG, NPY, CSV,...

Data
Cache-based dat:
patch-based datasets,
enhanced data loader

Visualizations Optimizers

Inference modules

Sliding windows, saliency Infer

Tensorboard integration, Metrics LR finder, ayerwise LR,

CSRC

C++/CUDA extensions Jupyter Notebook integration 0CAUC, FROC, Hausdorff Novograd /

N
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Monai Applications and Use Cases
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MONAI MODEL ZOO: a collection of medical imaging models in the MONAI Bundle format
MONAI Model Zoo MONAI Resea MONAI RESEARCH: Implementations of state-of-the-art research outcomes

MONAI TUTORIALS: to demonstrate the capabilities and integration with 0SS packages

Classification Registratio GAN & AutoEncoder

MONAI WORKFLOWS: for ease of robust training & evaluation of research experiments

AutoML data analyzers, algorithm generators Federated learning client workflows
Client APIs allow pipeline integration with any federated learning framework

automated machine learning components for data-driven workflows and hyperparameters

Workflow event handlers Iteration, epoch-based metrics stats. track

as event handlers of the engines

Workflow engines

Model checkpoint saving/loading, validation pipelines, LR scheduling,

Supervised trainer, evaluator
P metrics report generation, network output saving, transform inverter

FOUNDATIONAL COMPONENTS: domain-specialised APls compatible with PyTorch programs
Loss functions Networks, Transforms
Segmentation, regression, differentiable modules Spatial, intensity, |0, utilities,
classification, detection . compose with 3™ party adaptor
Network with 2D/3D, Gaussian filtering,
CRF, squeeze & excitation, warping

Readers & writers
Support of various formats:
NIfTI, PNG, NPY, CSV,...

Data
Cache-based dat:
patch-based datasets,
enhanced data loader

Visualizations Optimizers

Inference modules

Sliding windows, saliency Infer

Tensorboard integration, Metrics LR finder, ayerwise LR,

CSRC

C++/CUDA extensions Jupyter Notebook integration OCAUC, FROC, Hausdorff Novograd /
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Monai Transformations

@ Many transformations found in Monai documentation
& Dictionary transformations
® Create list of dictionaries with associated paths to stored image and label data
@ Use Compose function to load, transform, and save images
a Create Monai dataset as input of PyTorch DatalLoader and continue with training, inference, etc.

SpatialPadd(keys=["image" label'], CenterSpatialCro

spatial 0, 300, 300))

Figure: Examples of Monai Dictionary Transformations
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https://docs.monai.io/en/latest/transforms.html##dictionary-transforms
https://docs.monai.io/en/latest/transforms.html##monai.transforms.Compose
https://docs.monai.io/en/latest/data.html
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Rotating 3D Images with Monai

Slice through x-center Slice through y-center Slice through z-center
] 0

D .
[ 200 400

Slice through z-center

© Use BorderPadd to ensure correct fill values for pglcgthroshxcenter | Sicethoushycenter
rotation

© Affined rotation, padded with maximal spatial size
for any rotation

@ Save image

@ Load image and label
@ Ensure Channel First

0 100

Figure: Example image before and after rotation with 15
degree rotation about z-axis
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Defining Robustness

“Robustness measures the resilience of a system towards perturbations in any of its components'[12]

@ | ocal Robustness
® For a given input x, model provides same result for x and all inputs x” within ball of radius & centered at x
@ Global Robustness
@ Model is locally robust for all inputs in the input space [13]
@ Adversarial Robustness
® Worst-case scenario, model’s ability to resist being fooled
® Probabalistic/Physically Real Robustness
® Probability that difference in ¢ close inputs satisfy Lipschitz property is greater than (1 — €)

Pr (IF) = 1Ol < ks [IxX =X I = x| < 8) > 1 e
X, X!~

® Still difficult to verify, but only have to show true with probability of at least (1 — €) with respect to realistic input
distribution
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@ Mean Absolute Error of Dice and sDice as robustness metric

27=1 (|Ol’;)ice — ARbice(e)iD

DiceMAE(e) = -

SDI'CGMAE(ﬁ) _ 27:1 (lOéDicen_ AHéDice(e)l)

where n is number of patient samples, O, is score of a given sample prior to rotation, AR’ is score of the
given sample after rotation, and € = [a b c] is the rotation array about (x, y, z)

@ Plot with respect to increasing rotation around each axis

& Use Wilcoxon signed-rank tests (non-parametric alternative to t-test) to see if selected pertubations lead to
significantly different Dice scores across samples as in [14].
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Open Questions A“(IT
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@ Should we focus on realistic cases for robustness test? Or take adversarial approach?
@ s there an exact criterion to answer “is this neural network robust"? Is this too problem dependent?

@ If adversarial, should we stick with rotations across one axis at a time? Or try rotating across several
dimensions at once since we have the capacity?
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Questions?
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